frp damper

  • Lithopone 28-30%, also known as B301 and B311, is a white pigment that has been widely used in various industries due to its excellent properties such as high brightness, good weather resistance, and chemical stability. This pigment is primarily composed of zinc sulfide (ZnS) and barium sulfate (BaSO4), which are combined in a specific ratio to achieve the desired color and performance.
  • Photocatalytic activity is another fascinating property of rutile TiO2
  • When manufacturers add titanium dioxide to foods and other ingestible products, it’s typically referred to as E171, which relates to food-grade purity.

  • Barium sulfide is produced by carbothermic reduction of barium sulfate. Zinc sulfate is obtained from a variety of zinc products, often waste, by treatment with sulfuric acid.

  •  〜2. 2, The reaction temperature is 10~. The reaction temperature is 0. 15~0. 2kg, reaction temperature 10~ 5〜lh。 The mixing time is 0. 5~lh.
  • Rutile

  • The report can be customized based on the location (country/region) of your plant.
  • Another important factor to consider when selecting a supplier is reliability and consistency. Choose a supplier that has a proven track record of delivering orders on time and in full. This will help ensure that you have a steady supply of anatase titanium dioxide pigment when you need it, minimizing downtime and interruptions in your production processes.
  • Technical Specifications:(Standard:Q/SNBJ1-2012)  

  • The American Heritage Dictionary or Encarta, via Microsoft Bookshelf 98, Microsoft Corp., 1998
  • Another common use of titanium IV oxide is in food coloring. Titanium dioxide is a FDA-approved food additive that is used to enhance the color of various food products. It is commonly used in candies, pastries, and dairy products to create vibrant colors. Titanium dioxide is a safe food additive that is used in small quantities to enhance the visual appeal of food products.


  • width=350

  • Cleaning products as an abrasive agent
  • One of the most striking features of TIO2 factories is their ability to adapt and evolve with changing times. As the world becomes more conscious about health and safety standards, these facilities have risen to the challenge by implementing rigorous quality control measures. The end product, titanium dioxide, meets stringent international norms, ensuring that consumers worldwide receive a safe and consistent product.
  • We know that there are a lot of suspended organisms and colloidal impurities in natural water. The forms of suspended solids are different. Some large particles of suspended solids can settle under their own gravity. The other is colloidal particles, which is an important reason for the turbidity of water. Colloidal particles can not be removed by natural settlement, because colloidal particles in water are mainly clay with negative electricity The Brownian motion of colloidal particles and the hydration on the surface of colloidal particles make colloidal particles have dispersion stability. Among them, electrostatic repulsion has the greatest influence. If coagulant is added to water, it can provide a large number of positive ions and accelerate the coagulation and precipitation of colloid. Compressing the diffusion layer of micelles makes the potential change into an unstable factor, which is also conducive to the adsorption and condensation of micelles. The water molecules in the hydrated film have fixed contact with the colloidal particles and have high elastic viscosity. It is necessary to overcome the special resistance to expel these water molecules. This resistance hinders the direct contact of the colloidal particles. The existence of some hydrated films depends on the electric double layer state. If coagulant is added to reduce the zeta potential, the hydration may be weakened. The polymer materials formed after coagulant hydrolysis (the polymer materials directly added into water generally have chain structure) play an adsorption bridging role between the colloidal particles. Even if the zeta potential does not decrease or does not decrease much, the colloidal particles can not contact each other and can be adsorbed through the polymer chain Colloidal particles can also form flocs.

  • Resumo–Este artigo discute a descoberta de litopônio fosforescente em desenhos de aquarela do artista americano John La Farge datados de entre 1890 e 1905 e a história do litopônio na indústria de pigmento no final do século XIX e início do século XX. Apesar de ter muitas qualidades desejáveis para o uso em aquarela branca ou tintas a óleo, o desenvolvimento do litopônio como um pigmento de artistas foi prejudicado por sua tendência a se escurecer na luz solar. Sua disponibilidade para e uso por parte de artistas ainda não está clara, uma vez que os catálogos comerciais dos vendedores de tintas geralmente não eram explícitos na descrição de pigmentos brancos como algo que contém litopônio. Além disso, o litopônio pode ser confundido com o branco de chumbo durante o exame visual e sua fosforescência de curta duração pode ser facilmente perdida pelo observador desinformado. O litopônio fosforescente foi documentado em apenas um outro trabalho até hoje: uma aquarela de Van Gogh. Além da história da manufatura do litopônio, o artigo detalha o mecanismo para a sua fosforescência e sua identificação auxiliada pela espectroscopia de Raman e espectrofluorimetria.

  • Australian researchers examined how titanium dioxide as a food additive affected gut microbiota in mice by orally administering it in drinking water. The study, published in the journal Frontiers in Nutrition in 2019, found the treatment could “alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that titanium dioxide significantly impacts gut homeostasis.” The changes were then linked to colonic inflammation, along with a higher expression of inflammatory cytokines, which are signal proteins that help with regulation. The researchers concluded that titanium dioxide “impairs gut homeostasis which may in turn prime the host for disease development.”

  • Following a request for assessment in 2020 by the EU, the European Food Safety Authority (EFSA) assessed E171, particularly for its genotoxicity. In 2022, the agency deemed the food additive no longer safe for use.  

  • The Evolution of Anatase and Rutile Nano-TiO2 in Manufacturing
  •  

  • The demand for titanium dioxide has been steadily increasing over the years, driven by the growing demand for paints, coatings, plastics, and other products that require this versatile compound. As a result, the titanium dioxide manufacturing industry has been expanding rapidly, with many companies investing in new production facilities and technologies to meet the growing demand.
  •  
  • Genotoxicity Assessment 

  • We’re most often exposed to E171 through the foods we ingest. We find E171 in many food products, like popsicles, ice cream, gum, and more. Another way we ingest E171 is through pharmaceutical drugs. Many pills and capsules contain E171 as an inactive ingredient.